

Build Your App with Zig

Southeast Linux Fest 2025
Charlotte, NC

Cameron Conn

What?
● This is a talk about Zig
● Low-level programming language, like C
● Not a 30-minute tutorial on how to be a Zoomer

Zig coder

This talk in 100 seconds
● Zig has no magic , macros, or hidden flow💩
● Low level w/ manual memory management

● zig cross-compiles Zig and C

● Optional bounds-checked arrays

● comptime, error handling, defer cleanup, SIMD

● Zig is C, but way better

In this Talk
● Motivations
● Why/where use to Zig right now
● How to use Zig w/o programming
● Not an in-depth course on Zig

– goto docs if you want a lesson

https://ziglang.org/documentation/0.14.1/

What your favorite programming
language says about you

Don’t use Zig
● Zig is alpha quality software
● Frequently breaking changes
● Few resources or books online

Don’t Use Zig (cont.)

Don’t use Zig (cont.)

Skipping Stuff
● SIMD Vectors (cool)
● Enum
● Tuples, varargs
● And much more...
● For better coverage, see ziglang.org

Part I: Crash Course In Zig

zig zen

Syntax
● https://github.com/camconn/self-2025

● See: self-2025/src/main.zig

Tastes Like Chicken
C Zig

uint8_t, …, int64_t u8, ..., i64

bool, true, false bool, true, false

float, double f32, f64

char * []u8

char * (w/ null term) [:0]u8

float, double f32, f64

bool bool

!, &&, ||, (Logical) !, and, or

!, >>, <<, &, | (Bitwise) !, >>, <<, &, |

func(foo) func(foo)

Numbers
● Integers are signed or unsigned

– u8, i8, u32, i32, etc.
– Have arbitrary width (1 up to 216 – 1)

● i7, u2025, u1337

● IEEE 754 types:
– f16, f32, f64, f80, f128

Numbers: To and From
● Convert int to float with explicit calls
● @truncate, @intCast, @floatFromInt,
@intFromFloat

Numbers: Safety
● Overflow checks for number ops
● Explicit overflow-underflow permitting versions
● See: src/overflow.zig

Pointers
● Pointers are non-null addresses in memory
● Have an alignment and a type
● var x: *i64 = &y;

Control Flow
● if

● while

● for
– Range syntax, multiple items

● break :label

Arrays & Slices
● Arrays have comptime-known length
● Slices have runtime-known length

– Pointer + runtime-known length
– Prefer slices over arrays

● Arrays → slices, but slices !→ arrays
● See: src/slice.zig

Union & Structs
● Unions can be optionally tagged w/ enums

– Tagging prevents type confusion from C

● Structs are just like you think
● Unions & structs can be extern or packed for

interop w/ C

Optional Types
● Optional types wrapping an inner type

– Like Rust’s Option<T>

● Unwrap with .? or orelse or if

● You can have null pointers with ?*usize

defer and errdefer
● Need to close a file? Procrastinate!

– Use defer file.close()

● Optionally free resources if there’s an error?
– Use errdefer alloc.free(my_var)

Error Handling
● Funcs can return types beginning with !

– Indicates an optional error

● To propagate the error to the caller and unwrap
success, do try func()

● Coerce error union to some value with catch

● See: src/err.zig

Memory
● Want malloc? Too bad!

● See: src/mem.zig

● Pick an Allocator
– GeneralPurposeAllocator, HeapAllocator,
FixedBufferAllocator, ArenaAllocator

● Allocator.alloc(), defer Allocator.free()

Breakout to Assembly
● asm volatile (…)

● In case you need it
● AT&T Syntax

Straight outta comptime
● comptime lets you run code at compile time

● Create look-up tables
● Hash input files
● Generics like std.ArrayList(i32)

comptime example
● See: src/comp.zig

Part 2: Unicode to machine code

Build w/ Zig
● Zig ships with the zig compiler
● zig run hello_world.zig

● zig build [thing] (defined in build.zig)

● See: build.zig

Cross Compilation
● Zig has all of the targets included in distribution

– Listed with zig targets command.

● zig build -Dtarget=<NAME> or zig build-exe -target <NAME>

● Example Targets:
– x86_64-linux-gnu, x86_64-windows-gnu

– aarch64-linux-gnu, aarch64-freestanding

– riscv64-linux-musl

– nvptx64-cuda-none, amdgcn-amdhsa-none

Cross-compile demo
● Cross compile with zig build -Dtarget=<NAME> or zig
build-exe -target <NAME>

● Cross compile for Arm64:
– zig build-exe src/main.zig -target aarch64-linux-

gnu

● RISC-V
– zig build-exe src/main.zig -target riscv64-linux-

musl

zig cc

● Zig compiles C too!
– zig ships a C compiler (clang)

● Cross compiles w/ LLVM
● No more 21 GB toolchain downloads!
● Very useful for cross-compiling

– Used in prod at Uber

zig cc demo
● Cross compile C code for riscv64

Zig Cross Limitations
● Some exotic targets and as well supported, like

LLVM

Deprecate C with Zig
● zig translate-c converts C code to Zig
● Show before-and-after example
● Uses std.libc functions

– I lied, you have std.c.malloc

● See: wc.c, wc_fixed.zig

Builds
● C uses Makefiles, CMake, Scripts
● Zig code is built in a project with a build.zig
● Defines module roots, dependencies, and

created exes, libs
● zig does <build|build-exe|build-lib|build-obj>

Builds (cont.)
● Build w/ zig build

● See: build.zig

Testing
● With C, you need external test frameworks

– Gtest, cppcheck

● With Zig, it’s built-in
– zig test path/to/file.zig

– Or in a project with a target, e.g. zig build test

Testing (demo)
● zig test src/tester.zig

Wrap-Up
● Zig does everything C does better
● C is old and yucky

Slides

camconn.cc/self-2025

Extras

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

