Build Your App with Zig

Southeast Linux Fest 2025
Charlotte, NC

Cameron Conn



What?

* This is a talk about Zig
* Low-level programming language, like C

e Not a 30-minute tutorial on how to be a Zoomer

Zig coder




This talk In 100 seconds

Zig has no magic &, macros, or hidden flow
Low level w/ manual memory management

z1g cross-compiles Zig and C

Optional bounds-checked arrays

comptime, error handling, defer cleanup, SIMD

Zig 1s C, but way better



In this Talk

Motivations
Why/where use to Zig right now
How to use Zig w/o programming

Not an in-depth course on Zig
— goto docs If you want a lesson


https://ziglang.org/documentation/0.14.1/
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Don’t use Zig

e Zig IS alpha quality software
* Frequently breaking changes

* Few resources or books online
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Don’t use Zig (cont.)



Skipping Stuff

* SIMD Vectors (cool)

* Enum

* Tuples, varargs

 And much more...

* For better coverage, see ziglang.org



Part I: Crash Course In Zig



Z1g zen



Syntax

e https://github.com/camconn/self-2025
e See: self-2025/src/main.zig



Tastes Like Chicken

C

Zig

uint8_t, .., int64_t

ug, ..., 164

bool, true, false

bool, true, false

float, double

f32, f64

char * [ Ju8

char * (w/ null term) [:0]u8

float, double 32, f64

bool bool

l, &&, ||, (Logical) I, and, or

1, >>, <<, &, | (Bitwise) L, >>, <<, &, |
func(foo) func(foo)




Numbers

* Integers are signed or unsigned
- u8, 18, u32, 132, etc.

- Have arbitrary width (1 up to 2%° - 1)
e |7,u2025, ul337

* [|EEE 754 types:
- 116, 132, f64, 80, f128



Numbers: To and From

* Convert int to float with explicit calls

e @truncate, @1ntCast, @f LoatFromInt,
@intFromF loat



Numbers: Safety

* Overflow checks for number ops
* Explicit overflow-underflow permitting versions

e See: src/overflow.zig



Pointers

* Pointers are non-null addresses in memory

 Have an alignment and a type
e Var x: *164 = &y,



Control Flow
if
while
for

- Range syntax, multiple items
break :label



Arrays & Slices

Arrays have comptime-known length

Slices have runtime-known length
- Pointer + runtime-known length
- Prefer slices over arrays

Arrays - slices, but slices ! - arrays

See: src/slice.zig



Union & Structs

e Unions can be optionally tagged w/ enums
— Tagging prevents type confusion from C

e Structs are just like you think

* Unions & structs can be extern or packed for
interop w/ C



Optional Types

* Optional types wrapping an inner type
— Like Rust’s option<T>

 Unwrap with .? or orelse or if
* You can have null pointers with ?*usize



defer and errdefer

* Need to close a file? Procrastinate!
- Use defer file.close()

* Optionally free resources If there’s an error?

— Use errdefer alloc.free(my_var)



Error Handling

Funcs can return types beginning with !
- Indicates an optional error

To propagate the error to the caller and unwrap
success, do try func()

Coerce error union to some value with catch
See: src/err.zig



Memory

Want malloc? Too bad!

See: src/mem.zig

Pick an Allocator

- GeneralPurposeAllocator, HeapAllocator,
FixedBufferAllocator, ArenaAllocator

Allocator.alloc(), defer Allocator.free()



Breakout to Assembly

« asm volatile ( .. )

* In case you need It
* AT&T Syntax



Straight outta comptime

comptime lets you run code at compile time
Create look-up tables

Hash input files

Generics like std.ArrayList (i32)



comptime example

e« See: src/comp.zig



Part 2: Unicode to machine code



Build w/ Zig

Zig ships with the zig compiler
z1g run hello_world.zig

zig build [thing] (defined in build.zig)
See: build.zig



Cross Compilation

* Zig has all of the targets included in distribution

- Listed with zig targets command.
e zig build -Dtarget=<NAME> Or zig build-exe -target <NAME>

 Example Targets:
- X86_64-linux-gnu, x86_64-windows-gnu
- aarch64-linux-gnu, aarch64-freestanding
- riscv64-linux-musl

- nvptx64-cuda-none, amdgcn-amdhsa-none



Cross-compile demo

* Cross compile with zig build -Dtarget=<NAME> Or zig
build-exe -target <NAME>
* Cross compile for Arm64:

- z1g build-exe src/main.zig -target aarch64-1linux-
gnu

* RISC-V

- z1g build-exe src/main.zig -target riscv64-linux-
mus 1l



Z1g CC

Zig compiles C too!
- zig ships a C compiler (clang)

Cross compiles w/ LLVM
No more 21 GB toolchain downloads!

Very useful for cross-compiling
— Used in prod at Uber



zig cc demo

* Cross compile C code for riscve4



Z1g Cross Limitations

 Some exotic targets and as well supported, like
LLVM



Deprecate C with Zig

zig translate-c converts C code to Zig
Show before-and-after example

Uses std. 1ibc functions
- | lied, you have std.c.malloc

See: wc.c,wc_fixed.zig



Builds

C uses Makefiles, CMake, Scripts
Z1g code Is built in a project with a build.zig

Defines module roots, dependencies, and
created exes, libs

zig does <build|build-exe|build-lib|build-obj>




Builds (cont.)

e Build w/ zig build
e See: build.zig



Testing

* With C, you need external test frameworks
- Gtest, cppcheck
* With Zig, it's built-in
- z1g test path/to/file.zig
— Orin a project with a target, e.g. zig build test



Testing (demo)

e 719 test src/tester.zig



Wrap-Up

e Zig does everything C does better
* Cis old and yucky



Slides

camconn.cc/self-2025
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Extras
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