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What?
● This is a talk about Zig
● Low-level programming language, like C
● Not a 30-minute tutorial on how to be a Zoomer 

Zig coder



  

This talk in 100 seconds
● Zig has no magic , macros, or hidden flow💩
● Low level w/ manual memory management

● zig cross-compiles Zig and C

● Optional bounds-checked arrays

● comptime, error handling, defer cleanup, SIMD

● Zig is C, but way better



  

In this Talk
● Motivations
● Why/where use to Zig right now
● How to use Zig w/o programming
● Not an in-depth course on Zig

– goto docs if you want a lesson

https://ziglang.org/documentation/0.14.1/


  

What your favorite programming 
language says about you



  

Don’t use Zig
● Zig is alpha quality software
● Frequently breaking changes
● Few resources or books online



  

Don’t Use Zig (cont.)



  

Don’t use Zig (cont.)



  

Skipping Stuff
● SIMD Vectors (cool)
● Enum
● Tuples, varargs
● And much more...
● For better coverage, see ziglang.org



  

Part I: Crash Course In Zig



  

zig zen



  

Syntax
● https://github.com/camconn/self-2025

● See: self-2025/src/main.zig



  

Tastes Like Chicken
C Zig

uint8_t, …, int64_t u8, ..., i64

bool, true, false bool, true, false

float, double f32, f64

char * []u8

char * (w/ null term) [:0]u8

float, double f32, f64

bool bool

!, &&, ||, (Logical) !, and, or

!, >>, <<, &, | (Bitwise) !, >>, <<, &, |

func(foo) func(foo)



  

Numbers
● Integers are signed or unsigned

– u8, i8, u32, i32, etc.
– Have arbitrary width (1 up to 216 – 1)

● i7, u2025, u1337

● IEEE 754 types:
– f16, f32, f64, f80, f128



  

Numbers: To and From
● Convert int to float with explicit calls
● @truncate, @intCast, @floatFromInt, 
@intFromFloat



  

Numbers: Safety
● Overflow checks for number ops
● Explicit overflow-underflow permitting versions
● See: src/overflow.zig



  

Pointers
● Pointers are non-null addresses in memory
● Have an alignment and a type
● var x: *i64 = &y;



  

Control Flow
● if

● while

● for
– Range syntax, multiple items

● break :label



  

Arrays & Slices
● Arrays have comptime-known length
● Slices have runtime-known length

– Pointer + runtime-known length
– Prefer slices over arrays

● Arrays → slices, but slices !→ arrays
● See: src/slice.zig



  

Union & Structs
● Unions can be optionally tagged w/ enums

– Tagging prevents type confusion from C

● Structs are just like you think
● Unions & structs can be extern or packed for 

interop w/ C



  

Optional Types
● Optional types wrapping an inner type

– Like Rust’s Option<T>

● Unwrap with .? or orelse or if

● You can have null pointers with ?*usize



  

defer and errdefer
● Need to close a file? Procrastinate!

– Use defer file.close()

● Optionally free resources if there’s an error?
– Use errdefer alloc.free(my_var)



  

Error Handling
● Funcs can return types beginning with !

– Indicates an optional error

● To propagate the error to the caller and unwrap 
success, do try func()

● Coerce error union to some value with catch

● See: src/err.zig



  

Memory
● Want malloc? Too bad!

● See: src/mem.zig

● Pick an Allocator
– GeneralPurposeAllocator, HeapAllocator, 
FixedBufferAllocator, ArenaAllocator

● Allocator.alloc(), defer Allocator.free()



  

Breakout to Assembly
● asm volatile ( … )

● In case you need it
● AT&T Syntax



  

Straight outta comptime
● comptime lets you run code at compile time

● Create look-up tables
● Hash input files
● Generics like std.ArrayList(i32)



  

comptime example
● See: src/comp.zig



  

Part 2: Unicode to machine code



  

Build w/ Zig
● Zig ships with the zig compiler
● zig run hello_world.zig

● zig build [thing] (defined in build.zig)

● See: build.zig



  

Cross Compilation
● Zig has all of the targets included in distribution

– Listed with zig targets command.

● zig build -Dtarget=<NAME> or zig build-exe -target <NAME>

● Example Targets:
– x86_64-linux-gnu, x86_64-windows-gnu

– aarch64-linux-gnu, aarch64-freestanding

– riscv64-linux-musl

– nvptx64-cuda-none, amdgcn-amdhsa-none



  

Cross-compile demo
● Cross compile with zig build -Dtarget=<NAME> or zig 
build-exe -target <NAME>

● Cross compile for Arm64:
– zig build-exe src/main.zig -target aarch64-linux-

gnu

● RISC-V
– zig build-exe src/main.zig -target riscv64-linux-

musl



  

zig cc

● Zig compiles C too!
– zig ships a C compiler (clang)

● Cross compiles w/ LLVM
● No more 21 GB toolchain downloads!
● Very useful for cross-compiling

– Used in prod at Uber



  

zig cc demo
● Cross compile C code for riscv64



  

Zig Cross Limitations
● Some exotic targets and as well supported, like 

LLVM



  

Deprecate C with Zig
● zig translate-c converts C code to Zig
● Show before-and-after example
● Uses std.libc functions

– I lied, you have std.c.malloc

● See: wc.c, wc_fixed.zig



  

Builds
● C uses Makefiles, CMake, Scripts
● Zig code is built in a project with a build.zig
● Defines module roots, dependencies, and 

created exes, libs
● zig does <build|build-exe|build-lib|build-obj>



  

Builds (cont.)
● Build w/ zig build

● See: build.zig



  

Testing
● With C, you need external test frameworks

– Gtest, cppcheck

● With Zig, it’s built-in
– zig test path/to/file.zig

– Or in a project with a target, e.g. zig build test



  

Testing (demo)
● zig test src/tester.zig



  

Wrap-Up
● Zig does everything C does better
● C is old and yucky



  

Slides

camconn.cc/self-2025



  

Extras
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