Build Your App with Zig

Southeast Linux Fest 2025
Charlotte, NC

Cameron Conn

What?

* This is a talk about Zig
* Low-level programming language, like C

e Not a 30-minute tutorial on how to be a Zoomer

Zig coder

This talk In 100 seconds

Zig has no magic &, macros, or hidden flow
Low level w/ manual memory management

z1g cross-compiles Zig and C

Optional bounds-checked arrays

comptime, error handling, defer cleanup, SIMD

Zig 1s C, but way better

In this Talk

Motivations
Why/where use to Zig right now
How to use Zig w/o programming

Not an in-depth course on Zig
— goto docs If you want a lesson

https://ziglang.org/documentation/0.14.1/

What your favorite programming
language says about you

pe B@Q@ HC
JUI'ﬂ @ You are YCE You 5

JavaScript

You are anerd Youare !
You are You are You are Youare You are a nerd a nerd a ner a nerd
a nerd a nerd a nerd a nerd a nerd

HTML
= —) o ’
—
React 1S ™ -
You are You are ~arl '
ar You are? You are You are
a nerd a nerd

a nerd a nerd erd d €
z

r

Don’t use Zig

e Zig IS alpha quality software
* Frequently breaking changes

* Few resources or books online

is:issue state:open label:miscompilation ® Q > Labels & Milestones e

Open 63 Closed 168 Author - Labels « Projects = Milestones ~ Assignees - Types -~ =1 Newest ~

E} mips: Compiling for mip52 generates mip54 instructions ' arch-mips QLELLELGEI m MGG IENGN | upstream
#24089 - Sirius902 opened last week - § unplanned

wE

(mips{,64) f16 infinity works with explicitly inline function, but not normal function (‘arch-mips’ (TSI O
upstream 3z
#24066 - rootbeer opened last week - §2 0.15.0

() vector reduce operation fails on sparc64-linux [arch-sparc QUEICHTEITY m upstream

#23719 - alexrp opened on Apr 28 - 2 unplanned

() LLVM ERROR: SPARCv8 does not handle f128 in calls; pass indirectly for sparc-* targets | arch-sparc | QUERCHEEINT m

el EVGT Y | upstream Jz

#23674 - alexrp opened on Apr 26 - 2 unplanned

(LLVM compilation error when assigning enum to union at runtime ([l

#23577 - Abstract-Everything opened on Apr 15 - 2 0.15.0

() @errorName misbehaves when global error set type has a size of 1 byte ((IF) (frontend (T
#23533 - wooster0D opened an Apr 10 - CP":HS.'D

(9 Sema: saturating left shift produces an incorrect safety check and invalid Air @I | frontend
#23033 - jacobly0 opened on Mar 1- §20,15.0

(© Surprising aliasing despite explicit copy @EEEETY miscompilation
#22906 - jamii opened on Feb 15 - 2 0.15.0

Don’t use Zig (cont.)

Skipping Stuff

* SIMD Vectors (cool)

* Enum

* Tuples, varargs

 And much more...

* For better coverage, see ziglang.org

Part I: Crash Course In Zig

Z1g zen

Syntax

e https://github.com/camconn/self-2025
e See: self-2025/src/main.zig

Tastes Like Chicken

C

Zig

uint8_t, .., int64_t

ug, ..., 164

bool, true, false

bool, true, false

float, double

f32, f64

char * [Ju8

char * (w/ null term) [:0]u8

float, double 32, f64

bool bool

l, &&, ||, (Logical) I, and, or

1, >>, <<, &, | (Bitwise) L, >>, <<, &, |
func(foo) func(foo)

Numbers

* Integers are signed or unsigned
- u8, 18, u32, 132, etc.

- Have arbitrary width (1 up to 2%° - 1)
e |7,u2025, ul337

* [|EEE 754 types:
- 116, 132, f64, 80, f128

Numbers: To and From

* Convert int to float with explicit calls

e @truncate, @1ntCast, @f LoatFromInt,
@intFromF loat

Numbers: Safety

* Overflow checks for number ops
* Explicit overflow-underflow permitting versions

e See: src/overflow.zig

Pointers

* Pointers are non-null addresses in memory

 Have an alignment and a type
e Var x: *164 = &y,

Control Flow
if
while
for

- Range syntax, multiple items
break :label

Arrays & Slices

Arrays have comptime-known length

Slices have runtime-known length
- Pointer + runtime-known length
- Prefer slices over arrays

Arrays - slices, but slices ! - arrays

See: src/slice.zig

Union & Structs

e Unions can be optionally tagged w/ enums
— Tagging prevents type confusion from C

e Structs are just like you think

* Unions & structs can be extern or packed for
interop w/ C

Optional Types

* Optional types wrapping an inner type
— Like Rust’s option<T>

 Unwrap with .? or orelse or if
* You can have null pointers with ?*usize

defer and errdefer

* Need to close a file? Procrastinate!
- Use defer file.close()

* Optionally free resources If there’s an error?

— Use errdefer alloc.free(my_var)

Error Handling

Funcs can return types beginning with !
- Indicates an optional error

To propagate the error to the caller and unwrap
success, do try func()

Coerce error union to some value with catch
See: src/err.zig

Memory

Want malloc? Too bad!

See: src/mem.zig

Pick an Allocator

- GeneralPurposeAllocator, HeapAllocator,
FixedBufferAllocator, ArenaAllocator

Allocator.alloc(), defer Allocator.free()

Breakout to Assembly

« asm volatile (..)

* In case you need It
* AT&T Syntax

Straight outta comptime

comptime lets you run code at compile time
Create look-up tables

Hash input files

Generics like std.ArrayList (i32)

comptime example

e« See: src/comp.zig

Part 2: Unicode to machine code

Build w/ Zig

Zig ships with the zig compiler
z1g run hello_world.zig

zig build [thing] (defined in build.zig)
See: build.zig

Cross Compilation

* Zig has all of the targets included in distribution

- Listed with zig targets command.
e zig build -Dtarget=<NAME> Or zig build-exe -target <NAME>

 Example Targets:
- X86_64-linux-gnu, x86_64-windows-gnu
- aarch64-linux-gnu, aarch64-freestanding
- riscv64-linux-musl

- nvptx64-cuda-none, amdgcn-amdhsa-none

Cross-compile demo

* Cross compile with zig build -Dtarget=<NAME> Or zig
build-exe -target <NAME>
* Cross compile for Arm64:

- z1g build-exe src/main.zig -target aarch64-1linux-
gnu

* RISC-V

- z1g build-exe src/main.zig -target riscv64-linux-
mus 1l

Z1g CC

Zig compiles C too!
- zig ships a C compiler (clang)

Cross compiles w/ LLVM
No more 21 GB toolchain downloads!

Very useful for cross-compiling
— Used in prod at Uber

zig cc demo

* Cross compile C code for riscve4

Z1g Cross Limitations

 Some exotic targets and as well supported, like
LLVM

Deprecate C with Zig

zig translate-c converts C code to Zig
Show before-and-after example

Uses std. 1ibc functions
- | lied, you have std.c.malloc

See: wc.c,wc_fixed.zig

Builds

C uses Makefiles, CMake, Scripts
Z1g code Is built in a project with a build.zig

Defines module roots, dependencies, and
created exes, libs

zig does <build|build-exe|build-lib|build-obj>

Builds (cont.)

e Build w/ zig build
e See: build.zig

Testing

* With C, you need external test frameworks
- Gtest, cppcheck
* With Zig, it's built-in
- z1g test path/to/file.zig
— Orin a project with a target, e.g. zig build test

Testing (demo)

e 719 test src/tester.zig

Wrap-Up

e Zig does everything C does better
* Cis old and yucky

Slides

camconn.cc/self-2025

[=] i [m]

Extras

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

